
) qff//  O -

N95- 22977

':y/:

J

Non-Noetherian Symmetries for Oscillators

in Classical Mechanics and in Field Theory

Sergio A. Hojman 1, Jaime De La Jara 1'2 and Leda Pefia 1

l Depar_amento de Fisica, Facultad de Ciencias, Casilla 653,

Universidad de Chile, Santiago, Chile

2 Deparltamento de Fi_ica, Facultad de Ciencias F:_icas y

Matemdtica_, Ca,silla 487-3, Universidad de Chile, Santiago, ChlIe

Abstract

Infinitely many new conservation laws both for free fields as well as for test fields evolving

on a given gravitat!onal background are presented. The conserved currents are constructed
using the field theoretical counterpart of a recently discovered non-Noetherian symmetry

which gives rise to a new way of solving the classical small oscillations problem. Several

examples are discussed.

1 Introduction

Noether's theorem plays a fun(lamental role in field theory [1]. Besides Noetherian symme-

tries there are, however, other kinds of symmetry transformations for the field equations which,

loosely speaking, do not preserve the variational principle, i.e., they do not satisfy Noether's

theorem [2,3,4]. They are non-Noetherian symmetries. Noether theorem gives rise to a conser-

vation law associated to each Noetherian symmetry transformati()n of a system. On the other

hand, non-Noetherian symmetries provide several (and sometimes infinitely many) conservation

laws associated to one transformation [3,4,5,6]. In some instances one non-Noetherian syImnetry

trmlsformation provides enough inform_ttion to solve completely an n degrees of freedom prob-

lem [4]. In order to be more precise let us turn our attention to the small oscillations problem

in classical mechanics. The Lagrangian is

1T .i.j 1V. i j
L = -_ ijq q - _ ijq q

with

and

i,j =1,2, .... ,n (1)

Tij = Tj, , V/s = Vii (2)

Consider the transformation

02L
det - detT_ s ¢ 0 (3)

04_0(lJ

q,i = qi + 6ql, t' = t (4)
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with

6q i = e(T-1V)ijq "_ (5)

It is straightforward to prove that (4)-(5) is a non-Noetherian symmetry transformation for

Lagrangian (1) as it maps the space of solutions of its equations of motion into its'elf (for details,

see [4]). As it is well known, energy is conserved for Lagrangian (1) and therefore

1 ij 1 ij
Ho = _Tij_l (t + -_Vijq q (6)

is a constant of motion. It may be easily proved [2,3,4] that the deformation 6H0 of H0 along a

symmetry transformation $qi,

OHo i OHo d i

6Ho- + )

is also a constant of motion.

(4)-(5) that

1 _j • .
H, = -_V_j,!1 il + _(VT-1VI,jq'q '

is a constant of motion. Deforming H1, so on and so forth we get that, in general,

H, = _((VT-i)s-lv)ijqiOj + _((VT-1)sV)iiqiq j

(7)

Thus, we get for the symmetry transformation given by Eqs.

(8)

(9)

is a constant of motion for s > 1. At most n of these constants of motion are functionally

independent due to the Cayley-Hamilton theorem. Note that this restriction dissappears in

field theory. Furthermore, it may be proved that all these constants are in involution. In the

next sections we will obtain the counterpart of these results for different examples in field theory.

2 Free Scalar Field

Consider the scalar field Lagrangian [7]

1 _, 1 2 2

where _ = _(x _') is a real scalar field. The equation of motion is

which written in detail reads

Consider the transformation

0,0"_ + m2_2 = 0

,_cy.______= (V 2 _ m2)¢ p
Ot 2

61_2 = e(V 2 - m2)_ -= eD_

(i0)

(11)

(12)

(13)
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It is straightforward to prove that 61_ satisfies Eq. (12) , i.e.,

0 2

Ot{61_ = DS,_,

Therefore, if _ is a solution of Eq. (12), then, _,' given by

/Ju
also solves it. The energy-nlomentum tensor T(0 )

Tltl/

(01 = _"_P'_ - 7/_'_£

(14)

(15)

(16)

is conserved for the scalar field. It is easy to prove that its first deformation given by

T,,, _ 1 [T"'(D_)'" + _'_(DT)"- ,I"_(T'_(DT)._, - m2_D_0)] (17)(r) - 2

1 has been introduced for convenience). The transformationsis also conserved (the factor

6,,_=_D"_ n=l,2,... (18)

are also synunetry transformations fl_r Eq. (11). Therefore, in general,

T,,,, _ 1 [_"(D%2)'" + _'"(D"_)"' - ,/'"'(w_(D"_p),o -m2_D"_p)] , (19)
(") - 2

is conserved for any n, as it, can be readily checked. To understand the physical meaning of

T Iw(,) it is interesting to consider its expression in terms of the Fore'let transform of cfl(x). The

solution T(.T) of Eq. (11)may be written in terms of T(k) as

1

¢fl(._.) _ (27r) 3/2 /(t4k 6(k _ - m2)ig(k°)(eikZcfl(k) q- e-ik*_p*(]¢)) (20)

where kx = k_,x" and the star denotes complex conjugatiol}, then one gets that the energy is

/d,_x moo __ J dak k 0 (21)P}_0)

where T(k) = (2k°)-'/2qo(k), wit, h k ° = +_/_'2 + ,,z2 and

P?,) = f (l'_a• T(,'_) = (-1)" / Oak (k°) 2"+' _'(fc)_'(f¢) (22)

which is a result very similar to the one obtained for the small oscillations problem [4]. We

have, therefore obtained infinitely many conservation laws for the fl'ee scalar field. Of course,

getting infinitely many conse,'ved qua,ltities for the free scalar field is no surprise since the

general solution to the problenl has been known for a long time. The purpose of discussing the

free scalar field is to get a better ,m(le,'sta, lding of the meaning of the non-Noetherian charges,

in the next section we will obtain sinfilar conservation laws for a test scalar field evolving on a

given static gravitational background which constitutes a more powerful result.

175



3 Test Scalar Field on a Static Gravitational Background

Consider the Lagrangian
1

= 2_/-2-g(g_"O.c20_c 2 - m2cp 2) (23)£

where the gravitational field is described by the static metric g.., with determinant g, which

satisfies
Og..
Ox o - 0 (24)

and

goi = 0

and g is the deternfinant of the metric. The equation of motion for the scalar field is

O.(x/-A--gg""O._) + x/_m2_o : 0

(25)

(26)

or, in full detail

where 95 = Oc2/Ox °. The Lagrangian is time independent

0£
-0

Ox o

and therefore energy is conserved

with

T_0)0 -

Again we may prove that

(27)

(28)

0.T("0) 0 = 0 (29)

2

51_ = e Z)_

is a symmetry transformation for Eq. (27) with

-go0
D =_ _O,(x/2-gg'3Oj) - m2goo

_/-g

Therefore, we find that

(3O)

(31)

(32)

is conserved for any n as it can be readily checked. We have thus found infinitely many inde-

pendent new conservation laws for a scalar field evolving on a static gravitational background.

Note that, the general solution for Eq. (27) on a Schwarzschild background metric is not known

at present.

Consider the Schwarzschild metric [8]

g._ = diag(1 2M -1r '1 - 2--%r,-r2,-r2sin20) (34)
r
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in units such that G=c=l. h, this case,

e'\(02 x0 0 O) 1 0_ )D-- r2Sill 0 _;(I" Sill0e.' _r ) 4 0-0(sin 000 + sin00¢ 2 m2r2sin0 (35)

with e "_= 1 - 2M/r. We get that

o r2sin0, _x,.,2 1 2 1
Tco)o= e + ex(:,r) ' + + r sin 0(:'*Y + (36)

and

T(°0o r2sin 0 ( x ,_ 12 e-"i_D"i' + e ::(D :): + fi_',o(D":),o+

1 )+ ,'2sin 2 OqO,¢(D,,qo), ¢ + in2_oD'_: (37)

are conserved for all n. Thus we have infinitely many new conservation laws for the scalar

field evolving on a gravitati,mal background. In regard to the convergence of the integrals
, 0 it is straightforward to realize that D"_0which define the conserved charges associated to F(n)0 ,

belmvcs no worse than _p in the lilnit r ---* oo, for the massive case, while it vanishes faster than _o

for the massless case. In other words, the new conserved charges behave (at worst) in the same

fashion as the usual conserved energy does (and mud, better in the massless case). This fact

may be explicitly verified for the particulaa" case of a massless scalar field of mlgular momentum

and frequency equal to 0. The explicit solution to Eq. (27) is [9]

_,(,.) = In(1 - 2M) (38)
r

as it can be readily verified. From Eq. (37) we have that TOo and TO)0° behave as r -2 and r -s.

0 converges faster than r -s when r _ oo.For n > 1, T(,00
As another example, consider the folh)wing metric [10]

g,,, = diag(r 2_, -/3,-r 2, -r2sin 2 0) (39)

which has been considered as a model for galactic dark matter dynamics. In Eq. (38) a and 3

are constants with _ = 2(7- 1)/7 and fl = (7 _ ÷47-4)/7, where 2 > 7 > 1. The Klein-Gordon

equation for a massless scalar field ew_lving on this nmtric is separable and its solutions are

known [11]. The radial part of _,(x") is

2--3")

n(r) = r _ (Aa_,(wz) + BN_,(wz)) (40)

where J.(x) and N_(x) are the Bessel and Neumanu functions, w is the frequency and

,,2 = (3.,/-2)2/4+I(I+ 1)(72 + 4.y - 4) z- _/(72 + 40' - 4) r_, (41)
(2 - 7)2 ' 2 - 3'
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Since the metric (38)satisfies Eqs. (24) and (25) we have that (36) and (37) are conserved. The

interesting fact in this case, is that if one studies the asymptotic behaviour of solution (39), one
0

finds that TOo and T(,,) 0 when r ---+oo behave as

1 1
__ 0 (42)T °)_ ,.. , T(.)o _ r2,,(,__)+_

Since 1 > _ > 0 this implies that 2n(1 - a') + _, > 1 for ,z > 1. It is straightforward to realize

that the conserved charge associated to T ° dive,'ges, while the ones linked to T(°)0 do exist, for

n _> 1. Of course the metric is n()t asymt)totically flat, so there is no Poincar_ invariance (at

infinity). New_'rtheless the new conservation laws provide ,elevant information for the problem
at hand.

4 Non-Linear Systems: Burgers Equation

Tile results we have l)resente(l above hohl, in general, for linear differential systems. Never-

theless, there are some t)hysi('ally relevant non-linear equations to which our findings may be

al)plied. Burgers equation is one su,:h examt)le. It has been known for some tinm [12,13] that

(tile non--linear) Burgers equati(m may l)e, in fact, related to a linear equation, which is, of

course, tra.ctable using our nlethod. Thereh)re, even though in an indirect way, we will use

our methods to deal with physically relevant non linear evolution equations. These results may

prove, in the future, to be applical)le to other non linear systems.

Consider the linear equati(m

u, + u_-,: -- 0, (43)

f,)r the field u(x, t). Here, ut nwans partial differentiation of the fiehl u with respect to t, and

similarly for the ,)th(.r s,dlixes. Define tit," new fiehl ,,(x, *) 1)y tile transformation

lly

v -- (44)

It is a straightforward matter to prove that v satisfies Burgers equation

v, + ,,_ + (,,_)_ = 0. (45)

We have already seen a general algorithm to generate symmetry transformations for linear

differential equations. We find that (Su defined by

_v, = u_, (46)

is a symmetry transformation for Eq. (43). A symmetry transformation (% based on (46) can

now be found for Burgers equation (45),

av = (v 4 + 6v'v, + 4vv_ + 3v,J + z,=,_)=. (47)

Of course, simpler transformations can also be constructed, but they will usually produce van-

ishing deformations of the conserved quantities already obtained.

We are not aware of the existence of a Lagrangian for Eq. (43) by itself, i.e., without con-

sidering it together with its time reverse(t counterpart, in which case the construction of the

Lagrangian is trivial. Under these c(msi(lerations, all the symmetry trmmformations presented
in this Section are non Noetherian.
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5 Summary and Conclusions

We have presented non-Noetherian symmetry transformations for oscillators in classical me-

chanics as well as in field theory which give rise to many conservation laws by deformation of

a given conserved quantity. For the classical mechanical case, the symmetry transformation

produced enough constants of the motion to completely solve the small oscillations problem.

In the case of field theory, we have found infinitely many conserved quantities even for fields

interacting with a given background gravitational field. In some cases, this procedure can be

extended to physically relevant non-linear equations such as Burgers equation. These results

may also be helpful to deal with Eckhaus equation [13]. The method presented here could be

used as an alternative way to diagonalize matrices using the procedure described in the classical

mechanical case [4], and it also affords a different procedure to deal with differential equations

such as the kind which give rise to special functions, for instance. Finally, we should mention

that the results presented in this note may be generalized to include electromagnetic like forces

linear in the velocities for the classical mechanical oscillators and the corresponding changes can

be introduced in the partial differential equations for the field oscillators.
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